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Influence of the Vorticity at the Membrane Surface on the 
Performances of the Ultrafiltration Rotating Module 

FERNANDO VIGO and CLAUD10 ULIANA 
INSTITUTE OF INDUSTRIAL CHEMISTRY 
UNIVERSITY OF GENOA 
GENOA, ITALY 

Abstract 

The performances of a rotating module during the ultrafiltration of oily 
emulsions have been studied and correlated with the vorticity at the membrane 
surface. Thus, a fully transparent module has been assembled and the size and 
shape of the vortices observed as functions of the rotational speed and the 
clearance of the annular gap around the membrane. The influence of the 
roughness and profile of the inner wall of the module has also been investigated. 
Photographs of the vortices have been correlated to the actual performances of a 
steel module. Evidence has been found relating the permeate flux and the size of 
the vortices. 

INTRODUCTION 

Many attempts have been made to utilize a rotating module for the 
ultrafiltration process (1-4). This type of module has some advantages in 
comparison with tubular and flat ones, as pointed out in an earlier paper 

A particular hydrodynamic regime takes place at the surface of the 
membrane: the so-called “Couette flow” which is mainly characterized by 
annular counterrotating vortices (Taylor’s vortices) (6, 7). 

The mass transport coefficient, and thus the resistance of the mem- 
brane to polarization, is dependent on these vortices through the Taylor 
number (4). In our study we tried to find evidence of a straightforward 
correlation between membrane performances and vortices by photo- 

(5). 

Copyright 0 1986 by Marcel Dekker, Inc. 
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FIG. 1. Schematic section of the ultrafiltration rotating module. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



PERFORMANCE OF ULTRAFILTRATION ROTATING MODULE 369 

graphically recording their number, size, and stability during ultra- 
filtration runs. 

Our aim was to gather experimental data useful in optimizing the 
rotating module performances. 

EXPERIMENTAL 

The ultrafiltration (U.F.) performances were checked by means of a 
steel module (Fig. 1) working with a 20% cutting oil emulsion at the 
following conditions: temperature, 40°C; pressure, 300 kPa; recycle rate, 

FIG. 2. Schematic section of the Plexiglas model. 
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FIG. 3. Vortices as observed at different rotating speeds in an annular gap 3.3 mm wide. 

10 L/min. A Celgard 3500 membrane made by Celanese was used in all 
experiments. 

The photographic record of the vortices was made with a module quite 
similar to that used previously but completely built of transparent 
Plexiglas (Fig. 2). It was provided with all the devices necessary to 
simulate the operating conditions so that, as shown in Fig. 2, we were able 
to follow, by the use of a mirror, the formation and development of 
vortices on the membrane surface side. The photographs were taken with 
the aid of an electronic flash light at a 1/30,000 exposure time. The 
vorticity was revealed by aluminum powder suspended in water with a 0.5 
g/L nonfoaming tensioactive agent. The suspension had a viscosity close 
to that of the oily emulsion. 
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RESULTS AND DISCUSSION 

First, the influence of temperature, pressure, and the feed recycling 
ratio on the formation of the vortices was checked. In the range of values 
typical for the U.F. process, we did not find any appreciable variation. 
This result allowed us to continue the tests at room conditions with the 
Plexiglas module. The recycling ratio was kept constant at values largely 
higher than the predicted permeate flux. 

Influence of the Rotational Speed 

The appearance and the size of the vortices were photographically 
recorded between 3.5 and 42.5 rps, corresponding to a 1-12 m/s tangential 
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FIG. 4. Permeate flux at standard conditions as a function of the rotating speed. 

speed over the membrane. We report in tangential speeds in order to 
allow for direct comparison with other kinds of modules. 

Four photographs taken at different speed are shown in Fig. 3. From 
these pictures it can be seen that while the sizes of the vortices are fairly 
independent of speed, their appearances are greatly affected by it. 

At higher speeds the vortices appear more confused and overlap. This 
is attributed to the formation of instability and to increased turbulence 
(8). In Fig. 4 the performances measured with the steel module are shown. 
This shows that the permeate flux increases with increasing instability, 
i.e., increasing turbulence. 

Influence of the Annular Gap 

The annular gap around the membrane was varied in both the steel 
and the Plexiglas module. Figure 5 photographs taken at three different 
gap sizes while keeping the tangential speed and other conditions 
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constant. Here again, it is useful to make a comparison with the 
performances reported in Fig. 4; the permeate flux now appears to be a 
function of the size (density) of the vortices. 

Influence of the Roughness 

In order to check the influence of turbulence without affecting the size 
of the vortices, the inner wall of the module, opposite the membrane, was 
covered with nets of 270 and 140 meshes. 

Photographs showing the overall effect on vorticity for the 270 mesh 
net are printed as Fig. 6. 

Figure 7 records performances with oil emulsions both in the presence 
of the net (“rough wall”) and without it (“smooth wall”). The gap over the 
membrane was kept at 2.5 mm in both cases. As expected, the net, acting 
as a turbulence promoter (9), lowers the polarization and increases the 
performances of the membrane. 

Influence of the Profile of the Inner Wall 

As shown by Figs. 4 and 5, performance is influenced by the size of the 
vortices, and the size variation is clearly related to the gap width. An 
attempt was made to obtain small vortices independent of the gap 
clearance. 

To accomplish this, the inner wall of the module was shaped according 
to the profile shown in Fig. 8. The vortices were then observed as 
functions of the tangential speed. Some photographic records are shown 
in Fig. 9. A performance comparison is shown by the plots of Fig. 10. 

From Fig. 9 it appears that this technique is successful; vortices having 
the same width as that of the groove are observed. At the same time, they 
look quite unstable, resulting in increased turbulence, especially at higher 
speeds. 

CONCLUSIONS 

The test runs allowed us to: 

(1) Visualize and photographically record the vorticity close to the 
membrane surface in a rotating module 
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FIG. 5. Vortices as observed in different annular gap widths but at the same rotation 
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speed (2 m/s). (a) 1.5 mm gap, (b) 2.5 mm gap. (c) 3.3 mm gap. 

375 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
2
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



376 VlGO AND ULIANA 

FIG. 6. Influence of wall roughness on the vortices. (a) Smooth wall, (b) wall covered with a 
stainless steel net of 270 mesh. Conditions: rotation speed = 4 m/s, gap = 2.5 mm. 
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FIG. 7. Permeate flux at standard conditions (2.5 mm gap) as a function of the rotational 
speed. 

M. support 

Annular gap 

FIG. 8. Schematic section of the grooves on the inner wall 
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FIG. 9. Vortices as observed in the case of regular grooves on the inner wall. 
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Rotational speeds: (a) 1 m/s, (b) 4 m/s, (c )  6 ds. 
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FIG. 10. Permeate flux at standard conditions (3.3 mm gap) as a function of the rotation 
speed. 

(2) Follow the development of vortices and turbulence as functions of 

(3) Correlate several fluid dynamic situations with corresponding 
some physical and geometrical parameters 

performances during ultrafiltration of oily emulsions 

We thus conclude that the performance of a U.F. rotating module 
depends not only on the turbulence, as expected, but also on the size of 
the vortices. When the proper technology is applied, both these para- 
meters can be exploited to enhance the efficiency of the U.F. process. 
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